Python tutorial day 3
Finish going over python fundamentals then go into matrix representations of networks
Agenda:

» go over solutions to Friday's worksheet
« Finsh python fundamentals
» Start looking at how networks can be represented in python

Useful python functions

In [3]: # length function

Recall lists
L =[1, 2, "Cindy", 0.4]
print(len(L))

L2 = [1, 2, "Cindy", 0.4, 10, "m"]
print(len(L2))

L3 = []
print(len(L3))
4

6

0

In [5]: # type function - tells you the type of data of a variable

a=1
print(type(a))

b = "Dominic"
print(type(b))

<class 'int'>
<class 'str'>

Now let's look at some useful functions in the numpy library
numpy library - python library that allows you to efficiently work with matrices

any matrix is an array

In [8]: #import the numpy library and call it "np'" form here onwards
import numpy as np

In [18]: |# size and shape

A = np.array([[1,0, 4], [0, 1, 2]])

print(A)

print(type(A))

print("The size of matrix A is",np.size(A))

print("The shape of matrix A is", np.shape(A))

print("The number of rows in matrix A is", np.shape(A)[0])
print("The number of columns in matrix A is", np.shape(A)[1])

[[1 0 4]
[0 1 2]]
<class 'numpy.ndarray'>
The size of matrix A is 6
The shape of matrix A is (2, 3)
The number of rows in matrix A is 2
The number of columns in matrix A is 3

In [26]: |# zeros - useful for when you need to create an array that you will put numbers into

B = np.zeros((2,3))
print(B)

A = np.array([[1,0, 4], [0, 1, 2]])

code that will output a matrix of all zeros the same shape as A
C = np.zeros(np.shape(A))

print(C)

use len on 1lists and np.shape and np.size on numpy arrays

[[0. 0. 0.]
[0. 0. 0.]]
[[0. 0. 0.]
[0. 0. 0.]]

In [35]: |# arange and linspace
arange returns evenly spaced numbers within a given interval - good for creating integers

a = np.arange(5) # input: stoping integer

print(a)

b = np.arange(1, 5, 1) # inputs: start, stop, step
print(b)

c = np.arange(1, 5, 2)
print(c)

linspace returns evenly spaced numbers within a given interval - good for creating decimal numbers

d = np.linspace(1, 5, 3) # inputs: start, stop, number of samples
print(d)

[012 3 4]
[1 2 3 4]
[1 3]

[1. 3. 5.]

There are many other useful numpy functions and you can check them out at the numpy documentation:
https://numpy.org/doc/stable/user/absolute_beginners.html

In [42]: |# pseudocode - informal way of writing code in a way that a human can understand. It's a useful tool
for solving difficult problems or coding difficult algorithms. One of the best approaches
#

to start implementing an algorithm.
For example, if you get a question like "write a function that squares each number in a list".

function def
for each number in the 1list
square the number

def square_list(L):
for i in range(len(L)):
L[i] = L[i] * L[i]
return L

L = [10, 9, 5, 0, -0.3, -2]
squareL = square_list(L)
#print(squarel)

Try writing the pseudocode for "write a function that squares each number in a numpy array"

pseudocode iteration 1

function def

for each element in the array
sqaure the element

pseudocode iteration 2

function def

for each row in the array

for each element in row
square the element

A = np.array([[1, 4, 5, -2],[0.1, 0, O, 21])

def mat_square(A):
for i in range(np.shape(A)[0]):
for j in range(np.shape(A)[1]):
A[1][3] = A[1]1[3] * A[1][]]

return A

Asquare = mat_square(A)
print(Asquare)

[[1.0e+00 1.6e+01 2.5e+01 4.0e+00]
[1.0e-02 0.0e+00 0.0e+00 4.0e+00]]

In [50]: |# Now we can try to tackle the solution to problem 3 from this weekend's worksheet.
Start writing the pseudocode for that problem.

iteration 1

create A and B

Create empty matrix to store C

fill in the number of the array

iteration 2

create A and B

create a matrix of all zeros called C which same
size as A and B

for each row in A

for each element in row

set element of C equal to the corresponding
numbers of A and B multiplied together
A= ([[11 -2, 0]/ [21 3, '5]])

B = ([[OI -3, 4]/ [11 2, 3]])

C = np.zeros((2, 3))

for i in range(np.shape(C)[0]):
for j in range(np.shape(C)[1]):
C[i1[31 = A[iI[3] * B[i][]]
print(C)

[[6. 6. 0.]
[2. 6. -15.]]

In [51]: |# before we can do problem 4, look at how to compute a dot product

a [1/ 4/ 0l '1]
b = [OI '21 3/ 1]
dot product should be: 1*0 + 4*-2 + 0*3 + -1*1 = -9

#pseudocode

initialize sum variable to zero

for each pair of numbers in the same position in a and b
add multiplication of those numbers to sum variable

s =0

for i in range(len(a)):
s = s + a[i]*b[i]

print(s)

-9

In []: # problem 4 pseudocode solution - Let's do the pseudocode together then you should go home and
code it up yourself.

H

pseudocode iteration 1

function def (inputl, input2)
determine if matrix-matrix product is possible
if possible, compute
else, print "not compatible"

H o R R

H

pseudocode iteration 2

function def (inputl, input2)
if number of columns of inputl = number of rows of input2
compute matrix-matrix product
else
print "not compatible"

oW oH Rk R

S

pseudocode iteration 3

function def (inputl, input2)
if number of columns of inputl = number of rows of input2
create matrix of zeros of correct size, call it out
fill in entries of out
else
print "not compatible"

H oW OH K KR R

H

pseudocode iteration 4

function def (inputl, input2)
if number of columns of inputl = number of rows of input2
create matrix of zeros of correct size, call it out
for each row of out
for each entry in row
compute the value that goes in entry
put value into entry of out - dot product
else
print "not compatible"

HOoH OH K R W W W R

In [69]: |# problem 5

solution 1 - adjacency matrix

A = np.array([[0, 3, 0, 7, ©, 15], [3,0,1,0,0,9],[0,1,0,2,0,2],[7,0,2,0,4,10],
[0,0,0,4,0,3],[15,9,2,10,3,0]])

#print(A)

flightNet = {
0: "Seattle",

1: "San Francisco",
2: "Los Angeles",
3: "Houston",
4: "Miami",
5: "New York City"
}
#print(flightNet[O])

solution 2 - adjacency list
flightNet2 = {
"Seattle": [["San Francisco", 3], ["Houston", 7], ["New York City", 15]],
"San Francisco": [["Seattle",3], ["Los Angeles",1], ["New York City",9]1],
"Los Angeles": [["San Francisco",1], ["New York City",2], ["Houston",2]],
"Houston": [["Los Angeles",2], ["Seattle",7], ["New York City", 10], ["Miami", 4]],
"Miami": [["Houston",4], ["New York City",3]],
"New York City": [["Seattle",15], ["San Francisco",9], ["Los Angeles",2], ["Houston",10], ["Miami", 3]]

}

how to access all of the keys in a dictionary
#for item in flightNet2:
print(item)

how to access the values for a specific key
#print(flightNet2["San Francisco"])

#try printing out all of the cities that Miami is connected to

a = flightNet2["Miami"]
print(a)
for x in a:

print(x[0])

Try to figure out how to loop through all of the edge and that should make problem 2 easier

[['Houston', 4], ['New York City', 3]]
Houston
New York City

In []:

https://numpy.org/doc/stable/user/absolute_beginners.html

