Name: _____ Due: 06/08

Problem 1. Compute the dot product between the following vectors or state if the dot product cannot be computed.

(a) $u = \begin{bmatrix} -2 \\ -7 \\ 1/2 \end{bmatrix}$ and $v = \begin{bmatrix} 0 \\ 10 \\ 2 \end{bmatrix}$ $\upsilon \cdot \forall : 0 - 70 \neq 1$ z = 69

(b)
$$u = \begin{bmatrix} -2 \\ -7 \end{bmatrix}$$
 and $v = \begin{bmatrix} 0 \\ 10 \\ 2 \end{bmatrix}$ not possible because the vectors are not the same size.

Problem 2. Compute the matrix-matrix product between the following matrices or state if you cannot compute the matrix-matrix product.

(a) $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $A \cdot \beta = \begin{bmatrix} I & O \\ I & I \\ I & 2 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} -2 & 17 & 15 \\ -7 & -10 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 17 & 15 \\ -7 & -10 & 2 \end{bmatrix}$
Not possible since
 $L : 2 \times 3$
 $R : 2 \times 3$

Problem 3. Compute the matrix-matrix product B^2 when $B = \begin{bmatrix} 0 & -1 & -2 \\ 1 & -10 & 3 \\ 1 & 0 & -1 \end{bmatrix}$

$$A^{*} = \begin{bmatrix} 0 & -1 & -2 \\ 1 & -10 & 3 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 & -2 \\ 1 & -10 & 3 \\ 1 & 0 & -1 \end{bmatrix}$$

$$: \begin{bmatrix} 0 - 1 - 2 & 0 + 10 + 6 & -1 \\ 0 - 10 + 3 & 9 - 35 \\ 0 + 0 - 1 & -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 10 & -1 \\ -7 & 9 - 35 \\ -1 & -1 & -1 \end{bmatrix}$$

1 of 2

Problem 4. What condition must a matrix A satisfy in order for you to be able to compute the matrix-matrix product A^2 ?

The number of rows and columns of A should be the same.

Problem 5. Compute the eigenvalues and eigenvectors of

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

$$0 = \det \left(\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} \right)$$

$$= \det \left(\begin{bmatrix} 1 - \lambda & 2 \\ 2 & 4 - \lambda \end{bmatrix} \right)$$

$$= (1 - \lambda)(4 - \lambda) - 2 \cdot 2$$

$$= 4 - \lambda - 4\lambda + \lambda^{2} - 4$$

$$= \lambda^{2} - 5\lambda$$

$$= \lambda (\lambda - 5)$$

eigenvalues: $\lambda = 0.5$

eigenvector for
$$\lambda = 0$$
:

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} : (A - \lambda I) \vee$$

$$: \left(\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 0 \\ 0 \end{bmatrix} : \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 0 \\ 0 \end{bmatrix} : \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 0 \\ 0 \end{bmatrix} : \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 0 \\ 0 \end{bmatrix} : \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 0 \\ 0 \end{bmatrix} : \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 0 \\ 0 \end{bmatrix} : \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 0 \\ 0 \end{bmatrix} : \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 0 \\ 0 \end{bmatrix} : \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 0 \\ 0 \end{bmatrix} : \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 0 \\ 0 \end{bmatrix} : \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 0 \\ 0 \end{bmatrix} : \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$: \begin{bmatrix} 0 \\ 0 \end{bmatrix} : \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$