
Short python tutorial - part 2

Cheatsheet for bitwise operators
and : returns True if statement1 and statement2 are True,
returns False otherwise

syntax: statement1 and statement2

or : returns True if statement1 or statement2 is True, returns False otherwise

syntax: statement1 or statement3

not : returns opposite of statement

syntax: not statement

In [5]: # example usage of bitwise operators

tf = True and False

print("The value of True and False is", tf)

tf = True or False

print("The value of True or False is", tf)

tf = not True

print("The value of not True is", tf)

tf = (True and False) or (True or False)
print("The value of (True and False) or (True or False) is", tf)

tf = not tf

print("The value of not ((True and False) or (True or False)) is", tf)

Flow control
flow control - things in coding which individual components of a program will run and when.

Ex: if statements, loops, ...

In [11]: # if statement - if some testExpression is Ture, evaluate the statements

inside of the if-statement. Indicate that some code is inside an if-statement

by indentation

syntax: if testExpression:

statements

tf = False

if tf == False:

 print("Hello, World!")

if not tf:

 print("Hello, World!")

num = 10

if num > 4:

 print("The number is greater than 4")

In [12]: # if statements can include other conditions and things to do if the first

statement isn't true. This is called an "if-else-statement"

syntax: if textExpression1:

statements1

elif textExpression2:

statements2

else:

statements3

if-else-statements will execute statements based on the first True

textExpressions or will execute statements in the else-statement if none of

the expressions are True.

note: the "else" part cannot have any testEpressions

note: you can have a many else-if's as you want but you can only have

1 or 0 else's.

num = 1

if num < 0:

 print("the number is less than 0")

elif num < 3:

 print("the number is between 0 and 2")

else:

 print("the number is greater than 2")

In [20]: # For loop - used to iterate over a sequence of things

syntax: for val in sequence:

statements

"val" takes on every value in the sequence and execute "statements" with

that value.

program to find the sum of all numbers stored in a list

numbers = [6, 5, 7, 0 , 2, -1]

s = 0

for val in numbers:

 s = s + val

#print(s)

Program to execute code n times

n = 10

for i in range(3, n):

 print(i)

In [29]: # while loop- repeat a specific block of code as long as the test expression

is true

syntax: while testExpression:

statements

Program to add natural numbers up to n: sum = 1 + 2 + ... + n

n = 10

s = 0

i = 1

while i <= n:

 s = s + i

 i = i + 1

print("The sum is:", s)

Program a while loop that multiplies all natural numbers up to 7

n = 3

prod = 1

i = 1

while i <= n:

 prod = prod * i

 i = i + 1

print(ans)

In []: # Break and continue - keywords used to alter the flow of a normal loop

When break is evaluated, if "breaks" out of the loop containing it

When continue is evaluated, it skips the rest of the code inside the loop

for the current iteration only

Drawing Drawing

In [31]: # Break and continue examples

for val in "string":

if val == "i":

break

print(val)

for val in "string":

 if val == "i":

 continue

 print(val)

In [35]: # Python function

syntax: def function_name(parameters):
"""Description of the function"""

statements

def greet(name):

 """ Function the greets the person named 'name' """

 print("Hello, " + name + ". Good Morning!")

greet("Cindy")

In [41]: # return keyword is used to exit a function. It also allows you to use wahtever you calculated inside

the function outside of the function

def abs_val(num):

 """ Computing the absolute value of input argument 'num' """

 if num >= 0:

 return num

 else:

 return -num

a = -10

a_abs = abs_val(a)

print(a_abs)

In [43]: # matrices - using lists (actually a list of lists)

L = [[1, 2], [3, 4]]

D = [[0, 1, 2, 3],[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6]]

print(D)

In [44]: # matrices - using numpy, a more efficient way to work with matrices

numpy is a python library with a bunch of useful matrix and linear algebra function

import numpy

C = numpy.array(D)

print(C)

In [47]: n = 4

D_another = numpy.zeros((n, n))

print(D_another)

for i in range(n):

 for j in range(n):

 D_another[i][j] = i + j

print(D_another)

In [49]: # relevant numpy functions

print(numpy.shape(C))

print(numpy.shape(C)[0])

In []:

The value of True and False is False

The value of True or False is True

The value of not True is False

The value of (True and False) or (True or False) is True

The value of not ((True and False) or (True or False)) is False

Hello, World!

Hello, World!

The number is greater than 4

the number is between 0 and 2

3

4

5

6

7

8

9

The sum is: 55

6

s

t

r

n

g

Hello, Cindy. Good Morning!

10

[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6]]

[[0 1 2 3]

 [1 2 3 4]

 [2 3 4 5]

 [3 4 5 6]]

[[0. 0. 0. 0.]

 [0. 0. 0. 0.]

 [0. 0. 0. 0.]

 [0. 0. 0. 0.]]

[[0. 1. 2. 3.]

 [1. 2. 3. 4.]

 [2. 3. 4. 5.]

 [3. 4. 5. 6.]]

(4, 4)

4

